

Evaluating Extrapolation Ability of LLM In Chemical Domain

Taehun Cha and Donghun Lee Department of Mathematics, Korea University

Motivation

• Human is a good extrapolator • DNN is a good interpolator but poor at extrapolation

Can LLM perform

Experimental Setting

- LLM predict three DMA properties* of epoxy product when
- Adding a new resin (B_i)
- Replacing original resin with a new resin B_2
- Feed LLM SMILES, description, and added ratio of Resin B_i s
- Use GPT-4 and 917 data points from lab experiment

extrapolation in chemical domain?

*Glass transition temperature (T_a) , tan delta peak (δ) , cross-link density (v_c)

Results on Prediction Accuracy

	Add B_1		Add B ₂		Add B ₃		Replace <i>B</i> ₂	
	T_g	v_c	T_g	v_c	T_g	v_c	T_g	v_c
Lin.Reg.	4.61	3.47	4.31	2.25	8.42	3.29	12.87	10.94
Ridge	4.58	3.49	4.20	2.28	8.42	3.36	12.78	10.97
Ran.For.	5.70	3.10	4.99	3.11	9.79	3.01	12.62	7.18
XGB	5.61	3.15	4.60	2.37	9.00	3.04	13.35	7.79
Ours	7.32	2.99	5.62	2.88	6.40	2.51	21.17	4.67

AE on prediction nit δ which shows a similar end with T_a

ACL 2024

Bangkok, Thailand

Language

Molecules

ot Good enough :(

Example

LLM: "The incorporation of CTBN into an epoxy resin generally results in a **decrease in** T_{q} because the CTBN phase is softer and more flexible (...) The SMILES of Resin B indicates the presence of butadiene and acrylonitrile groups, which contribute to the elastomeric properties of the resin." -> LLM Using its chemical knowledge!

Answer

Results on Prediction Direction

		Av	era	Freq.		
		Train		Test	1	Ļ
Add B ₁	T_g	161	\downarrow	158	92	358
	δ	0.68	1	0.72	456	322
Add B ₂	T_g	161	\downarrow	156	91	248
	δ	0.68	1	0.74	271	151
Add B ₃	T_g	161	\downarrow	151	91	542
	δ	0.68	1	0.74	350	527
Rep. <i>B</i> 2	T_g	161	\downarrow	146	18	151
	δ	0.68	1	0.71	176	106

- Average: material properties in train and test sets. • Freq.: Word counts on
- extrapolation direction
- LLM predict a correct extrapolation direction with incorrect degree

1-shot Correction

 Ask LLM to predict again with one previous prediction and ground truth value

		0-shot	1-shot
_	T_g	21.1	12.1
Rep.	δ	1.11	1.08
<i>B</i> ₂	v_c	4.67	3.89

• LLM can adjust the degree

LLM uses its chemical knowledge to extrapolate to unseen materials

Conclusion & Future Works

- Extrapolation direction is correct but degree is wrong
- LLM can effectively adjust the degree with one shot correction
- **Applicability to Bayesian optimization under unseen environment?**

*This work was supported by the Ministry of Trade, Industry and Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Virtual **Engineering Platform Program (P0022334).**