
SentenceLDA
Discriminative and Robust Document Representation 

with Sentence Level Topic Model

Taehun Cha and Donghun Lee



Contents

• Topic Modeling

• SentenceLDA

• Experiments

• Application: Corpus-level Key Opinion Mining

• Conclusion

10/28/2024 AIML PPT Template 2



Topic Modeling

• What are the "Topics" of the documents?
• e.g. News - Sports, Politics, Business ...

• How can we discover it?
• Supervised learning (classification)

• Unsupervised way?
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Topic Modeling

• In statistics and natural language processing, a topic model is a type

of statistical model for discovering the abstract "topics" that occur in

a collection of documents.

• Intuitively, given that a document is about a particular topic, one would

expect particular words to appear in the document more or less

frequently.

• "dog" and "bone" will appear more often in documents about dogs, "cat" and 

"meow" will appear in documents about cats, and "the" and "is" will appear

approximately equally in both.

4https://en.wikipedia.org/wiki/Topic_model



Topic Modeling - LDA

• Consider a data generating process:
• Choose N ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜉)

• Choose 𝜃 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼)

• For each of the N words 𝑤𝑛:
• Choose a topic 𝑧𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑇(𝜃)

• Choose a word 𝑤𝑛 from 𝑝 𝑤𝑛 𝑧𝑛, 𝛽 , a multinomial probability conditioned on
the topic 𝑧𝑛

5Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.



Topic Modeling - LDA

• For example, for topics (sports, business, politics):
• Choose N = 100

• Choose 𝜃 = (0.3, 0.5, 0.2)

• For each of the N words 𝑤𝑛 :
• Choose a topic 𝑧𝑛 = business

• Choose a word 𝑤𝑛 from 𝑝 𝑤𝑛 𝑧𝑛, 𝛽 ,

6Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.

Topic / Word Soccer Stock Democracy ...

Sports 0.5 0.05 0.01 ...

Business 0.1 0.4 0.2 ...

Politics 0.05 0.1 0.5 ...



SentenceLDA
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• About Word-level Topic Models

• Same words contain different meaning depending on contexts (Discriminative)

• Different words contain same meaning depending on contexts (Robust)

• List of words = Topic? (Interpretable)

Topic / Word Soccer Stock Democracy ...

Sports 0.5 0.05 0.01 ...

Business 0.1 0.4 0.2 ...

Politics 0.05 0.1 0.5 ...



SentenceLDA

• Latent Dirichlet Allocation (LDA)
• Choose N ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜉)

• Choose 𝜃 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼)

• For each of the N words 𝑤𝑛:
• Choose a topic 𝑧𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑇(𝜃)

• Choose a word 𝑤𝑛 from 𝑝 𝑤𝑛 𝑧𝑛, 𝛽 , a multinomial probability conditioned on
the topic 𝑧𝑛

8Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.



SentenceLDA

• GaussianLDA
• Choose N ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜉)

• Choose 𝜃 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼)

• For each of the N words 𝑤𝑛:
• Choose a topic 𝑧𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑇(𝜃)

• Choose a word embedding 𝑤𝑛 from 𝑝 𝑤𝑛 𝑧𝑛, 𝛽 , a Gaussian probability
conditioned on the topic 𝑧𝑛

9Das et. al., (2015). Gaussian LDA for Topic Models with Word Embeddings., ACL



SentenceLDA

• SentenceLDA
• Choose N ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜉)

• Choose 𝜃 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼)

• For each of the N sentences 𝑠𝑛:
• Choose a topic 𝑧𝑛 ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝑇(𝜃)

• Choose a sentence embedding 𝑠𝑛 from 𝑝 𝑠𝑛 𝑧𝑛, 𝛽 , a Gaussian probability
conditioned on the topic 𝑧𝑛

10



SentenceLDA
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Generator

T1 As China grows ...

T2 Tennis Player ...

T3 President Obama ..

T4 Music concert ...

...
Document-Sentence
Embedding Topic Embedding Topic Sentence

Documents



Experiment 1 – Discriminative
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• Hypothesis

• Does the sentence-level topic model improve discriminative (or classification) power 

of document representation?

• Dataset

• 20News: 17.3K documents, 6 coarse, 20 fine grained classes

• NYT: 11.6K documents, 5 coarse, 26 fine grained classes

• Baselines

• LDA, GaussianLDA

• Contextual TM: Word-level neural topic model utilizing contextual information

• SenClu: Sentence-level topic model depending on similarity metric



Experiment 1 – Discriminative
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Experiment 1 – Discriminative
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• Better performance of SenClu and SentenceLDA shows the sentence-level 

topic model improves the discriminative power

• GLDA returns almost same distribution for any document

• Superior performance of SentenceLDA is not just because of the sentence 

embedding



Experiment 2 – Robust
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• Hypothesis

• Does sentence-level topic model improve robustness of document representation for 

paraphrasing?

• Paraphrasing Method

• Lexical: Substitue words with synonyms

• Syntactic: Parrot paraphraser (tends to change word order while maintaining words)

• Metric

• 𝐷𝑠𝑢𝑚 𝑃, 𝑄 =
1

2
Σ𝑖=1
𝐾 |𝑃𝑖 −𝑄𝑖|

• Kendall's Tau: Compute rank correlation from –1 to 1



Experiment 2 – Robust

16

• GaussianLDA returns almost same distribution for any document

• LDA performs better for Syntactic than Lexical

• SentenceLDA is robust to both Lexical and Syntactic paraphrasing



Corpus-level Key Opinion Mining
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• Dataset

• DebateSum - "Impact Defense Core"

• 762 debate documents with 12,957 sentences

• Model

• 10 topics

• Train GPT2-XL on DebateSum corpus (embedding to sentence)



Corpus-level Key Opinion Mining
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Conclusion
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• Semantic unit extension from word to sentence improves

• Discriminative

• Robust power of topic models

• SentenceLDA returns more interpretable topic sentences in sentence form
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