Pre-trained Language Models Return Distinguishable Probability Distributions to Unfaithfully Hallucinated Texts

Taehun Cha and Donghun Lee

Korea University Department of Mathematics

10/1/2024

Problem Definition

- Hallucination
 - Factuality: consistency to the world knowledge
 - Faithfulness: consistency to the provided source text
- Trained model generation probability and uncertainty showed correlation with the faithfulness of a text
 - Improved natural language generation via loss truncation (ACL 2020)
 - On hallucination and predictive uncertainty in conditional language generation (EACL 2021)
- How about PLM itself?

10/28/2024

Problem Definition

- We compute two metrics
 - Generation Probability (LogProb)
 - Entropy
- With 24 different sizes and types of PLMs
 - Encoder (BERT, RoBERTa, ALBERT)
 - Decoder (GPT2, LLAMA2)
 - Encoder-Decoder (T5, BART)
- On 6 data sets
 - Knowledge-grounded dialogue (TC, WOW, CMU)
 - Summarization (XSUM)
 - Wiki-like generation (WikiBio)

- Compare with two statistics
 - Kolmogorov-Smirnov statistics
 - Wasserstein distance

3

Distinguishability

- Regardless of model size and type, 88-98% of cases return statistically significantly distinguishable distributions
- Both LogProb and Entropy show significant distinguishability

Distinguishability

Size Effect

- Researchers tend to adopt the largest (like GPT-4) model first
- But bigger size does not guarantee better distinguishability

• Training Effect

- Several hallucination-reduction methods utilize trained models
- But training affect distinguishability in both (un)favorable ways

5

Weighted Training

- We observed the hallucinated data points show higher Entropy and lower LogProb.
- We propose a training method with the loss weighted by LogProb and Entropy of each data point.

Algorithm 1 Weighted Training

- 1: Input: Training data set $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$, Target model f, Pre-trained reference model g, Target metric $M \in \{\text{Entropy, LogProb}\}$, Weight vector $W = \phi$
- 2: for i = 1 to N do
- 3: **if** M = Entropy **then**

$$w_i = -M(g(x_i, y_i))$$

5: else if M = LogProb then

$$b: \qquad w_i = M(g(x_i, y_i))$$

7: **end if**

4:

8:
$$W \leftarrow W \bigcup \{w_i\}$$

- 9: **end for**
- 10: $W \leftarrow \text{SoftMax}(W) \times N$
- 11: **Train** f with $w_i \text{Loss}(x_i, y_i)$

Weighted Training

- Compare with 4 baselines
 - Unweighted: Usual training
 - CTRL: Control-token based method for knowledge grounded dialogue
 - Truncation: Truncate high-loss data points for summarization
 - mFACT: Weight loss with faithfulness score for summarization
- On 3 data sets
 - WOW, FaithDial: Knowledge grounded dialogue data sets
 - MediQA: Summarization + QA data set
- With 4 faithfulness metrics and 3 general text quality measures

10/28/2024

Weighted Training

Data Set	Method	Q^2		SummaC	FactKB	ROUGE-L	BERT	BART
		FI	NLI			<u> </u>	Score	Score
WOW	Unweighted	0.6521 (0.02)	0.6947 (0.02)	0.2941 (0.04)	0.5633 (0.03)	0.2862 (0.00)	0.3012 (0.00)	-2.7871 (0.01)
	CTRL	0.6746 (0.02)	0.7165 (0.01)	0.3051 (0.03)	0.5774 (0.01)	0.2741 (0.01)	0.3070 (0.01)	<u>-2.7759</u> (0.02)
	Truncation	0.6996 (0.01)	0.7455 (0.01)	0.4089 (0.03)	0.6252 (0.02)	0.2788 (0.00)	0.3133 (0.00)	-2.7998 (0.02)
	mFACT	0.7539 (0.01)	0.7930 (0.01)	0.4988 (0.04)	0.6966 (0.03)	<u>0.3068</u> (0.00)	0.3367 (0.00)	-2.8348 (0.04)
	Ours-LogProb	<u>0.7689</u> (0.02)	<u>0.7946</u> (0.02)	0.4287 (0.04)	<u>0.7033</u> (0.03)	0.2960 (0.01)	0.2963 (0.01)	-2.7633 (0.05)
	Ours-Entropy	0.7742 (0.02)	0.8040 (0.01)	0.5503 (0.02)	0.7273 (0.01)	0.3105 (0.00)	0.3124 (0.00)	-2.7811 (0.02)
FaithDial	Unweighted	0.7830 (0.03)	0.8439 (0.02)	0.1761 (0.05)	0.6156 (0.04)	0.3066 (0.00)	0.3360 (0.00)	-2.7874 (0.02)
	CTRL	0.7758 (0.01)	0.8405 (0.01)	0.2255 (0.05)	0.6267 (0.04)	0.2921 (0.00)	0.3384 (0.00)	-2.7769 (0.04)
	Truncation	0.7804 (0.01)	0.8479 (0.01)	0.3055 (0.06)	0.6205 (0.02)	0.2938 (0.00)	0.3369 (0.00)	-2.7903 (0.04)
	mFACT	0.8108 (0.0)	0.8733 (0.0)	0.4099 (0.04)	0.6885 (0.02)	0.3023 (0.00)	0.3460 (0.00)	-2.8402 (0.04)
	Ours-LogProb	0.8454 (0.02)	0.8841 (0.02)	0.3652 (0.10)	0.7706 (0.04)	<u>0.3135</u> (0.01)	0.3371 (0.00)	<u>-2.7251</u> (0.03)
	Ours-Entropy	<u>0.8403</u> (0.02)	0.8905 (0.01)	<u>0.4092</u> (0.07)	<u>0.7475</u> (0.03)	0.3179 (0.00)	<u>0.3401</u> (0.00)	-2.7166 (0.02)
MediQA	Unweighted	0.7912 (0.01)	0.8333 (0.01)	0.5152 (0.02)	<u>0.9987</u> (0.00)	0.2491 (0.01)	0.1712 (0.01)	-2.8650 (0.03)
	CTRL	0.7754 (0.02)	0.8189 (0.02)	0.4899 (0.02)	0.9988 (0.00)	0.2355 (0.01)	0.1602 (0.01)	-2.9055 (0.04)
	Truncation	0.7784 (0.01)	0.8180 (0.01)	0.5349 (0.02)	0.9988 (0.00)	0.2364 (0.01)	0.1710 (0.01)	-2.8126 (0.05)
	mFACT	<u>0.7936</u> (0.02)	0.8334 (0.02)	0.5087 (0.02)	0.9988 (0.00)	0.2540 (0.01)	0.1784 (0.00)	-2.8837 (0.04)
	Ours-LogProb	0.8129 (0.02)	0.8579 (0.02)	0.5416 (0.01)	0.9927 (0.01)	0.2447 (0.01)	0.1748 (0.01)	-2.8680 (0.06)
	Ours-Entropy	0.7853 (0.02)	0.8371 (0.02)	0.4966 (0.01)	0.9984 (0.00)	0.2465 (0.00)	0.1701 (0.01)	<u>-2.8530</u> (0.06)

- Our method improves faithfulness while maintaining overall text quality.
- It also shows general applicability through various tasks.

10/28/2024

8

Key Takeaways

- PLMs generally return distinguishable distributions to unfaithfully hallucinated texts
- NLPers should check the size and training effect before adopting the models
- We derive a simple but effective training method which enhance the model faithfulness

10/28/2024

