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Abstract

In this work, we show the pre-trained language
models return distinguishable generation prob-
ability and uncertainty distribution to unfaith-
fully hallucinated texts, regardless of their size
and structure. By examining 24 models on 6
data sets, we find out that 88-98% of cases re-
turn statistically significantly distinguishable
generation probability and uncertainty distri-
butions. Using this general phenomenon, we
showcase a hallucination-reducing training al-
gorithm. Our algorithm outperforms other base-
lines by achieving higher faithfulness metrics
while maintaining sound general text quality
measures.1

1 Introduction

Hallucination is one of the key phenomena that
undermine the reliability of large language models
(LLMs), which recently gained large popularity in
real-world applications (Zhang et al., 2023). Ji et al.
(2023) characterized hallucinations with two per-
spectives: faithfulness and factuality. The former
represents consistency to the provided source text,
while the latter is consistency to the world knowl-
edge. For example, if a user asks a machine to
recommend a dinner menu and a machine answers
that ‘Cereal is a breakfast menu enjoyed by many
people’, then the answer is factual but not faithful
to the user’s request.

Before the pre-trained language model (PLM)
era, researchers found out that generation probabil-
ity and uncertainty measured by a language model
are correlated with the faithfulness of a text (Kang
and Hashimoto, 2020 and Xiao and Wang, 2021).
Though their work utilized un-pre-trained models
trained on specific tasks, like image captioning,
these works hinted at PLMs’ potential to distin-
guish unfaithfulness.

* corresponding author
1Source codes are available on https://github.com/

AIML-K/HalluDist

In this paper, we examine three research hypothe-
ses first. (1) Does the unfaithfulness distinguishing
ability generalize to the various sizes and types of
PLMs? (2) Does the model size affect the ability?
(3) How does the fine-tuning affect the ability? We
examine these hypotheses with 24 pre-trained lan-
guage models of various sizes and types on 6 data
sets. From massive experiments, 88-98% cases re-
turn significantly distinguishable generation prob-
ability and uncertainty distributions. Using this
phenomenon, we showcase a simple training algo-
rithm that effectively reduces hallucination.

2 Related Works

Generation Probability/Uncertainty for
Unfaithfulness Reduction

While training, Kang and Hashimoto (2020) re-
ported truncating high-loss data points returns more
faithful news titles. The result implies training on a
data point with a high loss (i.e. low generation prob-
ability) can make a model generate unfaithful texts.
While decoding, Xiao and Wang (2021) showed
that the model’s predictive uncertainty shows a pos-
itive correlation with unfaithfulness in an image
captioning task. Though their work did not cover
the PLMs, it hinted at the relationship between
generation probability/uncertainty and faithfulness.
Wan et al. (2023) extended this line of work when
fine-tuning PLMs. But their (un)certainty is com-
puted from fine-tuned models, not a PLM itself,
without verifying the fine-tuning effect.

LLM Probability/Uncertainty as a
Factuality Measure

As LLMs showed impressive performance on
various tasks, hallucination researchers eagerly
adopted LLMs in their works. Manakul et al.
(2023) and Azaria and Mitchell (2023) reported
LLMs’ generation probability correlates well with
factuality. Varshney et al. (2023) utilized LLMs’

ar
X

iv
:2

40
9.

16
65

8v
1 

 [
cs

.C
L

] 
 2

5 
Se

p 
20

24

https://github.com/AIML-K/HalluDist
https://github.com/AIML-K/HalluDist


generation probability to detect factually wrong
texts. However, their works concentrated on the
factuality of generated texts, not faithfulness. More-
over, they only utilized GPT3-like LLMs without
verifying the size effect. Our work focuses on faith-
fulness while verifying the size effect.

PLM as a Quality Measure

PLMs can be used to construct quantitative metrics
for various NLP tasks. After Zhang et al. (2020)
and Sellam et al. (2020) introduced the BERTScore
and BLEURT to compare generated and target
texts, Yuan et al. (2021) introduced the BARTScore
to measure the generated text quality. Yuan et al.
(2021) showed that BART’s generation probability
shows a positive correlation with various quality
measures, like informativeness or coherence. Our
work is an extension and generalization of this work
especially for the unfaithful hallucination.

3 Suggested Metrics

Notations
Let D = {(xi, yi, hi)}Ni=1 be a data set. For ith

reference text xi, let yi = (yi,1, yi,2, ...yi,ni) be
a corresponding target text, where yi,j repre-
sents jth token of ith target text. Define yi,!j =
(yi,1, yi,2, ..., yi,j−1, [MASK], yi,j+1, ..., yi,ni),
where a jth token is replaced with a [MASK] token,
and yi,<j = (yi,1, yi,2, ..., yi,j−1), a truncated
target text. hi ∈ {Hallucinated, Entailed} is a
unfaithful hallucination label. If the content of yi is
faithful to the content of xi, then hi = Entailed. On
the other hand, if the content of yi is unfaithful to
the content of xi, then hi = Hallucinated. For the
convenience of notations, let DHallucinated be a sub-
set of the data set D such that hi = Hallucinated.
Likewise, define DEntailed similarly.

Let f be a PLM. f can be an encoder model
pre-trained on a masked language modeling task
like BERT, a decoder model pre-trained on an au-
toregressive language modeling task like GPT2, or
an encoder-decoder model like T5. For an encoder
model, f(xi, yi,!j)[v] ∈ [0, 1] is a probability of a
token v at masked position j given reference text
and masked target text. So f(xi, yi,!j)[yi,j ] is the
probability for the right token. For decoder and
encoder-decoder models, f(xi, yi,<j)[v] ∈ [0, 1] is
a probability of a token v at truncated position
j given reference text and truncated target text.
Hence f(xi, yi,<j)[yi,j ] is the probability for the
right token.

Metrics

Given a PLM f , we compute two metrics for each
data point (xi, yi). These metrics, frequently used
in the hallucination literature (Xiao and Wang,
2021, Manakul et al., 2023, Varshney et al., 2023
and Wan et al., 2023), are as follow:

• Log Token Probability (LogProb): A metric
used to estimate the given model’s generation
probability of a target text. We compute the
mean of log token probabilities of a target text
by 1

ni

∑ni
j=1 logf(xi, yi,<j)[yi,j ] when f is ei-

ther a decoder or an encoder-decoder model,
and 1

ni

∑ni
j=1 logf(xi, yi,!j)[yi,j ] when f is an

encoder model.

• Entropy: A metric frequently used to esti-
mate the given model’s prediction uncertainty
of a target text. We compute the mean of
entropy of each token for a target text by
1
ni

∑ni
j=1 Ev∼f(xi,yi,<j)[−logf(xi, yi,<j)[v]]

when f is either a decoder or
an encoder-decoder model, and
1
ni

∑ni
j=1 Ev∼f(xi,yi,!j)[−logf(xi, yi,!j)[v]]

when f is an encoder model.

After computing the metrics for each data point,
we obtain a metric distribution P for a data set.
With the P, we can obtain an empirical cumulative
distribution function (cdf), F .

4 Distribution Distinguishability

Let P be a distribution of a metric based on
a PLM f , and D be a statistic computing dis-
tinguishability between two distributions. In
this section, our goal is to verify (1) whether
D(P(DHallucinated)||P(DEntailed)) is statistically sig-
nificant, and how the (2) model size and (3) fine-
tuning of PLMs affect the distinguishability.

4.1 Experimental Setup

We utilize two statistics to quantify the distinguisha-
bility between two distributions.

• Kolmogorov–Smirnov Statistic (KS statis-
tic, Kolmogorov, 1933): Given two cdfs,
F1 and F2, the KS statistic is computed as
K(F1, F2) = supx|F1(x) − F2(x)|. Intu-
itively, K represents the maximum discrep-
ancy between two cdfs. The KS statistic does
not require distributional assumption unlike
the t-test used in Wan et al. (2023).



Figure 1: Empirical Entropy distribution and mean of DHallucinated and DEntailed for each model and data set.
We first compute Entropy for each data point, then separate the points according to the hallucination label. x-axis
represents Entropy and y-axis represents the relative frequency. We plot the result of the smallest models for each
model type.

• Wasserstein Distance (Kantorovich, 1960):
Given two one-dimensional cdfs, F1 and
F2, the Wasserstein-1 distance is computed
as W (F1, F2) =

∫ 1
0 |F

−1
1 (q) − F−1

2 (q)|dq,
which represent the discrepant area between
the two cdfs.

Appendix A intuitively visualizes two metrics,
given the two cdfs.

The KS statistic enables a non-parametric sta-
tistical test called the Kolmogorov–Smirnov test
(KS test) on distributional differences, unlike the
Wasserstein distance. However, the KS statistic is
sensitive to differences between the modes of two
distributions while insensitive to their tails (Lipp
and Vermeesch, 2023). We mainly utilize the KS
statistic to test the significance of distinguishability
and use the Wasserstein distance to compare the
overall difference between models.

For a comprehensive analysis, we gather several
natural language generation data sets containing
hallucination label hi from multiple tasks. For the
knowledge-grounded dialogue task, we utilize BE-
GIN data set (Dziri et al., 2022b) and FaithDial data
set (FaithDial, Dziri et al., 2022a). The BEGIN
data set consists of three subsets based on existing
data sets: TopicalChat (TC, Gopalakrishnan et al.,
2019), Wizard of Wikipedia (WOW, Dinan et al.,
2019) and CMU Document Grounded Conversa-
tions (CMU, Zhou et al., 2018). For the summa-
rization task, we use XSum Hallucination Data Set
(XSum, Maynez et al., 2020), where human an-

notates unfaithful hallucination labels on machine-
generated summaries. For Wiki-like text genera-
tion, we utilize SelfCheckGPT data set (WikiBio,
Manakul et al., 2023) based on WikiBio data set
(Lebret et al., 2016), where human annotates un-
faithful hallucination labels on GPT-3 generated
biography for corresponding Wikipedia page. In
summary, we utilize 6 data sets. Basic statistics of
each data are reported on Appendix B.1.

Our analysis requires white-box models return-
ing full probability distribution of tokens. As a
result, we utilize three general types of pre-trained
open-source transformer models. For the decoder
model, we test 4 sizes of GPT2 (Radford et al.,
2019) and 3 sizes of Llama2 (Touvron et al., 2023).
For the encoder model, we test 4 BERT (Devlin
et al., 2019), 4 ALBERT (Lan et al., 2020) and
2 RoBERTa (Liu et al., 2020). For the encode-
decoder model, we test 5 T5 (Raffel et al., 2020)
and 2 BART (Lewis et al., 2020). In summary, we
test 24 models.

4.2 Does PLM return Distinguishable
Distributions to Unfaithful Texts?

For each combination of a data set and a model, we
implement the KS test on the KS statistics with a p-
value of 0.01. We compute the mean and standard
deviation of the KS statistic. The results are on
Table 1.

Regardless of model type and metrics, PLMs
return significantly distinguishable distributions



LogProb Entropy

Sig. KS Sig. KS

Encoder
88.33% 0.3144 90.00% 0.3274
(53 / 60) (0.1097) (54 / 60) (0.1279)

Decoder
92.86% 0.3686 88.10% 0.3492
(39 / 42) (0.1536) (37 / 42) (0.1589)

Enc-Dec
88.10% 0.2652 97.62% 0.3927
(37 / 42) (0.1187) (41 / 42) (0.1698)

Table 1: Summary table for the KS test. Sig. is a ratio
of the statistically significant KS test with a p-value of
0.01. KS is the mean and standard deviation of the KS
statistics.

for DHallucinated and DEntailed for 88-98% cases.
For LogProb, decoder models return more sig-
nificant results. On the other hand, for Entropy,
encoder-decoder models return more significant
results.

Empirical Entropy distributions for each model
and data set are presented on Figure 1. After com-
puting an Entropy for each data point, we plot two
histograms (in blue and red) with respect to the hal-
lucination label. Most cases return distinguishable
mean and distributions. PLMs tend to assign higher
Entropy on DHallucination, representing higher un-
certainty. Meanwhile, PLMs tend to assign higher
LogProb on DEntailment as shown in Appendix C.
Roughly speaking, PLMs are internally less confi-
dent and less certain when they predict hallucinated
texts.

4.3 Model Size Effect

Multiple researchers reported that GPT3-like
LLMs can distinguish hallucinated texts (Manakul
et al., 2023 and Azaria and Mitchell, 2023). It is
natural to ask whether the distinguishing ability is
enhanced as its size grows. For comparison, we
visualize Wasserstein distance of each metric rel-
ative to the smallest model’s statistics. To see the
trend, we inspect models with more than three size
variations, GPT2, Llama2, ALBERT, and T5. We
compute the mean of Wasserstein distance for all
data sets. The results are on Figure 2.

The results show that bigger size does not guar-
antee better distinguishability. Notably for T5,
the bigger model returns much less distinguishable
distributions between hallucination and entailment
groups. This tendency is observed through all met-
rics. Researchers should not blindly adopt LLMs
to distinguish hallucinated texts without verifying

Figure 2: Visualization of the size effect. We divide all
the Wasserstein distances with the distances from the
smallest model to visualize the relative change as the
size grows.

their size effect.

4.4 Fine-tuning Effect
Researchers utilized loss (Kang and Hashimoto,
2020) or uncertainty (Xiao and Wang, 2021) of
the generation model once trained on target data to
reduce unfaithfulness. It is also natural to ask how
the fine-tuning of PLM on target data affects the
distinguishability.

We train GPT2 models on the WOW and CMU
training data set and check the statistics on the
WOW and CMU portion of BEGIN data. Note that
the training data does not contain the portion from
the BEGIN data set so data contamination does
not occur. The results for WOW data set are on
Figure 3.

Figure 3: Fine-tuning effect for WOW data set. We di-
vide all the Wasserstein distances with the distances
from the pre-trained model to visualize the relative
change as training proceeds.

The distinguishability from either metric is
affected by fine-tuning while showing differ-
ent trends. The distinguishability of LogProb in-
creases as fine-tuning proceeds while the distin-
guishability of Entropy tends to decrease. We find
similar trends in the CMU data set, as shown in
Appendix D. Researchers should verify the fine-
tuning effect of their target metric when they apply
hallucination-reduction techniques.

5 Hallucination Reduction with Weighted
Training

In this section, we showcase a weighted training
method to mitigate hallucination. The idea is sim-



Data Set Method
Q2

SummaC FactKB ROUGE-L
BERT BART

F1 NLI Score Score

WOW

Unweighted 0.6521 (0.02) 0.6947 (0.02) 0.2941 (0.04) 0.5633 (0.03) 0.2862 (0.00) 0.3012 (0.00) -2.7871 (0.01)

CTRL 0.6746 (0.02) 0.7165 (0.01) 0.3051 (0.03) 0.5774 (0.01) 0.2741 (0.01) 0.3070 (0.01) -2.7759 (0.02)

Truncation 0.6996 (0.01) 0.7455 (0.01) 0.4089 (0.03) 0.6252 (0.02) 0.2788 (0.00) 0.3133 (0.00) -2.7998 (0.02)

mFACT 0.7539 (0.01) 0.7930 (0.01) 0.4988 (0.04) 0.6966 (0.03) 0.3068 (0.00) 0.3367 (0.00) -2.8348 (0.04)

Ours-LogProb 0.7689 (0.02) 0.7946 (0.02) 0.4287 (0.04) 0.7033 (0.03) 0.2960 (0.01) 0.2963 (0.01) -2.7633 (0.05)

Ours-Entropy 0.7742 (0.02) 0.8040 (0.01) 0.5503 (0.02) 0.7273 (0.01) 0.3105 (0.00) 0.3124 (0.00) -2.7811 (0.02)

FaithDial

Unweighted 0.7830 (0.03) 0.8439 (0.02) 0.1761 (0.05) 0.6156 (0.04) 0.3066 (0.00) 0.3360 (0.00) -2.7874 (0.02)

CTRL 0.7758 (0.01) 0.8405 (0.01) 0.2255 (0.05) 0.6267 (0.04) 0.2921 (0.00) 0.3384 (0.00) -2.7769 (0.04)

Truncation 0.7804 (0.01) 0.8479 (0.01) 0.3055 (0.06) 0.6205 (0.02) 0.2938 (0.00) 0.3369 (0.00) -2.7903 (0.04)

mFACT 0.8108 (0.0) 0.8733 (0.0) 0.4099 (0.04) 0.6885 (0.02) 0.3023 (0.00) 0.3460 (0.00) -2.8402 (0.04)

Ours-LogProb 0.8454 (0.02) 0.8841 (0.02) 0.3652 (0.10) 0.7706 (0.04) 0.3135 (0.01) 0.3371 (0.00) -2.7251 (0.03)

Ours-Entropy 0.8403 (0.02) 0.8905 (0.01) 0.4092 (0.07) 0.7475 (0.03) 0.3179 (0.00) 0.3401 (0.00) -2.7166 (0.02)

MediQA

Unweighted 0.7912 (0.01) 0.8333 (0.01) 0.5152 (0.02) 0.9987 (0.00) 0.2491 (0.01) 0.1712 (0.01) -2.8650 (0.03)

CTRL 0.7754 (0.02) 0.8189 (0.02) 0.4899 (0.02) 0.9988 (0.00) 0.2355 (0.01) 0.1602 (0.01) -2.9055 (0.04)

Truncation 0.7784 (0.01) 0.8180 (0.01) 0.5349 (0.02) 0.9988 (0.00) 0.2364 (0.01) 0.1710 (0.01) -2.8126 (0.05)

mFACT 0.7936 (0.02) 0.8334 (0.02) 0.5087 (0.02) 0.9988 (0.00) 0.2540 (0.01) 0.1784 (0.00) -2.8837 (0.04)

Ours-LogProb 0.8129 (0.02) 0.8579 (0.02) 0.5416 (0.01) 0.9927 (0.01) 0.2447 (0.01) 0.1748 (0.01) -2.8680 (0.06)

Ours-Entropy 0.7853 (0.02) 0.8371 (0.02) 0.4966 (0.01) 0.9984 (0.00) 0.2465 (0.00) 0.1701 (0.01) -2.8530 (0.06)

Table 2: Comparison table of faithfulness metrics (left) and text quality metrics (right). We mark the best score in
bold and the second best with an underline.

ple. As we observe in Section 4, a data point with
high Entropy tends to contain a hallucination. Sim-
ilarly, a data point with low LogProb tends to con-
tain a hallucination. Then what would happen if
we use Entropy or LogProb as a loss weight for
training?

We compare four baseline training methods
on three data sets: the usual Unweighted train-
ing, a control-token method (CTRL, Rashkin
et al. (2021)), and other loss weighting methods
(Truncation (Kang and Hashimoto, 2020) truncate
high loss points and mFACT (Qiu et al., 2023)
weight the loss with faithfulness score). We com-
pare four faithfulness metrics and three general text
quality metrics. A more detailed explanation is in
Appendix E. The results are on Table 2.

For knowledge-grounded dialogue data sets, our
algorithms, with both Entropy and LogProb, im-
prove faithfulness compared to Unweighted by a
large margin, in all cases. The same phenomenon
occurs when compared with other baselines. It is
interesting since CTRL is designed to mitigate hal-
lucination, especially in the knowledge-grounded
dialogue task.

For MediQA, Ours-LogProb outperforms Un-
weighted on most metrics. Ours-LogProb outper-
forms Truncation and mFACT on Q2 and SummaC,
though both are designed to reduce hallucination
in the summarization task. The result shows not
only powerful hallucination reduction performance
compared to other task-specific methods but also

the general applicability of our methods through
various tasks.

Our algorithm maintains general text quality
measures, which we do not directly target. More
interestingly, our method often outperforms other
baselines. It may indicate its potential for enhanc-
ing not only faithfulness but also the overall fidelity
and quality of generated text across diverse evalua-
tion metrics.

6 Conclusion

Our work is the first comprehensive analysis of
the PLMs’ unfaithful hallucination-distinguishing
ability. We compare PLMs’ generation probabil-
ity and uncertainty distributions of unfaithful and
entailed texts. Regardless of the model type and
size, PLMs return statistically distinguishable dis-
tributions to unfaithfully hallucinated and entailed
texts for 88-98% cases. Unlike usual practice,
the smaller models show comparable (and some-
times better) distinguishability to the largest mod-
els, while the distinguishability of Entropy declines
while LogProb increases after fine-tuning. Utiliz-
ing this phenomenon, we showcase a hallucination-
reducing training algorithm that outperforms other
baselines with hallucination reduction while main-
taining sound general text quality measures. We
hope these findings lead to a deeper understanding
of the hallucination phenomenon and more reliable
hallucination mitigating techniques.



Limitation

Though we made comparisons within each model,
comparison between models raises a subtle issue.
For example, GPT2 and Llama2 are all decoder
models but utilize different tokenizers. The vocab
size of GPT2 is 50,257 while Llama2 is 32,000. As
a result, the overall token probability is lower and
entropy is higher for GPT2 since it should consider
many more tokens for generation. It makes cross-
model comparison difficult and requires some gen-
eralized form of (un)certainty, which is beyond the
scope of this work.

A PLM’s unfaithful hallucination-distinguishing
ability does not imply the faithfulness of the text
generated from the PLM. Likewise, confidence or
certainty computed from the inner state of a model
does not imply the certainty presented in the gener-
ated text. As a result, a model can generate unfaith-
ful text in a confident tone but with high entropy.
Researchers should not be confused between the
tone and computed uncertainty especially when
they work with black-box LLMs like GPT3.

As shown on Figure 1, distinguishability is rela-
tively vague for the XSum data set. One possible
reason can be the length of the reference text. The
mean length of reference text is 384 words, which
is much longer than other data sets (at most 286
words). Though we do not inspect the reference
text length effect on entropy and log token proba-
bility, further analysis is required.
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A Visualization of KS Statistic and
Wasserstein Distance

We visualize two statistics, the KS statistic and
Wasserstein distance for one-dimensional cdfs in
Figure 4.

Figure 4: Visualization of the Kolmogorov–Smirnov
statistic and Wasserstein distance. Red and blue his-
tograms are separate cdfs to compare and the yellow
arrow and the area represent each statistic.

B Basic Statistics of Data

B.1 Hallucination Data
On Table 3, we report the basic statistics of data
utilized in Section 4.

B.2 Weighted Training Data
On Table 4 we report the basic statistics of data
utilized on Section 5.

C Log Token Probability Distribution for
Hallucinated and Entailed Data Sets

We present the log token probability distribution of
DHallucinated and DEntailed on Figure 6. Prob-
ability on DHallucinated is relatively lower than
DEntailed, except BART. Roughly speaking, PLMs
are internally more confident when they predict
entailed texts.

D Fine-tuning Effect on CMU Data Set

We visualize the fine-tuning effect on the CMU
data set on Figure 5. We can check a similar trend

Data Set Train Valid (Dev) Test

TC
X 383 3,845

(305.11) (301.49)

WOW
X 430 3,607

(55.09) (55.19)

CMU
X 416 3,607

(225.68) (226.14)

FaithDial
33,887 6,297 6,441
(110.18) (112.04) (110.41)

XSUM
X 996 996

(385.06) (420.22)

WikiBio
X 954 954

(295.84) (262.50)

Table 3: The number of data points and the average
number of words of each data set.

Data Set Train Valid Test

WOW
41,489 2,294 2,224
(97.15) (96.78) (95.55)

FaithDial
33,887 6,297 6,441
(110.18) (112.04) (110.41)

MediQA
578 29 45

(334.82) (447.41) (509.77)

Table 4: The number of data points and the average
number of words of each data set.

with the WOW data set shown in Section 4.4. Dis-
tinguishability with respect to entropy decreases
while log token probability tends to increase.

E Experimental Detail for Weighted
Training

Algorithm 1 depicts the algorithm in detail. In lines
4 and 6, we compute each metric as proposed in
Section 4. In line 10, we apply the softmax function
and multiply N to obtain the same scale of total
loss as the unweighted loss.

Here are the detailed explanation on used base-
lines:

• Unweighted: Usual unweighted training. It is
equivalent to Algorithm 1 with W = 1N.

• CTRL: Rashkin et al. (2021) reported apply-
ing control tokens (<first-person>, <entailed>,
<low-prec> etc.) improves faithfulness in
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Figure 5: Fine-tuning effect for CMU data set. We di-
vide all the Wasserstein distances with the statistics from
the pre-trained model to visualize the relative change as
training proceeds.

Algorithm 1 Weighted Training

1: Input: Training data set D = {(xi, yi)}Ni=1,
Target model f , Pre-trained reference model
g, Target metric M ∈ {Entropy, LogProb},
Weight vector W = ϕ

2: for i = 1 to N do
3: if M = Entropy then
4: wi = −M(g(xi, yi))
5: else if M = LogProb then
6: wi = M(g(xi, yi))
7: end if
8: W ←−W

⋃
{wi}

9: end for
10: W ←− SoftMax(W )×N
11: Train f with wiLoss(xi, yi)

knowledge-grounded dialogue. To obtain the
control tokens, outer NER or NLI modules
are required.2

• Loss Truncation (Truncation): Kang and
Hashimoto (2020) suggested to truncate high-
loss data points while training to achieve more
faithful summarization. It is equivalent to Al-
gorithm 1 if wi = 1 for low-loss data points
and wi = 0 for the high-loss data points.3

• mFACT: Qiu et al. (2023) proposed another
weighted-training method. They weigh the
loss of each training example by its faithful-
ness score computed by a model trained on
hallucination data sets. Though they proposed
their method in a multi-lingual setting, it can
be easily adapted to English.4

For the experiment, we use T5-small as g and f
for our algorithm. For baselines, we train T5-small
(about 60 million parameters) with an AdamW

2We utilize the CTRL implementation from
https://github.com/McGill-NLP/FaithDial

3https://github.com/ddkang/loss_dropper
4https://huggingface.co/yfqiu-nlp/mFACT-en_XX

(Loshchilov and Hutter, 2019) optimizer with a
learning rate of 1e-4 for all methods. For the
other hyper-parameters, we only utilize the default
setting of packages and repositories. We do not
perform a hyper-parameter search. We train each
model 5 times and report the mean and standard
deviation of each metric. We use a machine with
AMD Ryzen 9 5900X 12-Core Processor CPU with
one NVIDIA RTX 3090 GPU.

Since our goal is to check the hallucination re-
duction performance of each training method, we
only utilize training techniques from baselines, not
decoding techniques (except attaching ‘<no-first-
person> <entailed> <high-prec>’ in CTRL decod-
ing). While decoding, we use greedy deterministic
decoding to exclude external factors.

CTRL is specialized in the knowledge-grounded
dialogue task while Truncation and mFACT are
specialized in the summarization task. So we use
WOW (Dinan et al., 2019) and FaithDial (Dziri
et al., 2022a) as benchmarks for the knowledge-
grounded dialogue task and MediQA-AnS5 (Sav-
ery et al., 2020) for the summarization task. Ba-
sic statistics of each data are reported on Ap-
pendix B.2.

MediQA-AnS data set is a question-driven sum-
marization data set consisting of (question, refer-
ence, answer (summary)) tuples. The reference is
a crawled web page and the answer is a human-
written summary of the reference for the question.
MediQA-AnS targets consumer-level questions on
healthcare information. Since hallucinations in
healthcare-related generations can severely harm
human health, we select MediQA-AnS as a suited
benchmark. We use MediQA-AnS as a training set
and use the NAACL-BioNLP 2021 - Task 2 data
set as the test set, which covers the same task.6

For faithfulness evaluation, we utilize three met-
rics. Q2 (Honovich et al., 2021)7 first generates
questions and answer candidates from the gener-
ated result. Then Q2 applies a QA model on the
reference to solve the generated question. After
obtaining the answer from the reference, Q2 com-
pares it with the answer candidates lexically (F1)
and semantically (NLI). Q2 has been utilized as
a de facto method to measure hallucination. Also,
we use SummaC score (Laban et al., 2022) and
FactKB’s probability of entailment (Feng et al.,

5https://osf.io/fyg46/
6https://github.com/abachaa/MEDIQA2021/blob/main/

Task2/README.md
7https://github.com/orhonovich/q-squared



Figure 6: Empirical log token probability distribution and mean of DHallucinated and DEntailed for each model
and data set.

2023) as additional faithfulness metrics.
For general text quality evaluation, we utilize

ROUGE-L8, BERTScore (Zhang et al., 2020)9,
and BARTScore (Yuan et al., 2021)10. We train
each model 5 times and compute the mean and
standard deviation of each score on the test set.

8https://pypi.org/project/rouge/
9https://github.com/Tiiiger/bert_score

10https://github.com/stanfordnlp/string2string
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