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• Randomized experiment divides subjects 
into two groups, treatment and control 
groups.

• However, randomized experiment is 
usually expensive, so an efficient 
experiment design is desirable.
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Active Learning in Randomized Experiment
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• Several works suggested efficient 
treatment allocation design given 
outcome variance, subject covariate, etc.

• However, these works assume the 
experimental subjects are given, not 
actively choosable.
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• What if we already know the covariate 
information in prior?
• Internet companies may know personal 

information before A/B test.

• Pharmaceuticals have experiment applicants’ 
personal information.

• Can we rationalize randomized 
experiment by choosing ‘proper’ subject 
at time t?
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• Active learning: a practitioner sequentially  
choose unlabeled data points and ask an 
oracle to label them. 

• Algorithm
• Goal: Estimate 𝑓(𝑥) w.r.t. utility function 𝑢𝑡

• For 𝑡 ∈ 1, … , 𝑇: 
• Compute utility function 𝑢𝑡(𝑥), 𝑥: unseen data point

• Choose 𝑥𝑡 = 𝑥∗ which optimizes 𝑢𝑡

• Obtain 𝑦𝑡 and train መ𝑓 with 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑡

• Goal: Make randomized experiment 
efficient with active learning framework
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Algorithm: ABC3

• Conditional Average Treatment Effect (𝑓(𝑥))
𝐶𝐴𝑇𝐸 𝑥 = 𝐸[𝑌1 − 𝑌0|𝑋 = 𝑥]

   where 𝑌𝑎: potential outcome, 𝑋: covariate.

• Expected precision in estimation of heterogeneous effect

𝜖𝑃𝐸𝐻𝐸( 𝐶𝐴𝑇𝐸𝑡) = න
𝑋

𝐶𝐴𝑇𝐸𝑡 𝑥 − 𝐶𝐴𝑇𝐸 𝑥
2

𝑑𝑃(𝑥)

   where 𝐶𝐴𝑇𝐸𝑡 = ො𝑦𝑡
1 − ො𝑦𝑡

0, ො𝑦𝑡
𝑎: a regressor at 𝑡.

• To optimize PEHE, we should assume the existence of population 
parameter, CATE.
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𝑥: age
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Algorithm: ABC3

• We utilize Bayesian framework by defining
𝐶𝐴𝑇𝐸Ω 𝑥 = ො𝑦Ω

1 − ො𝑦Ω
0

𝜖𝑃𝐸𝐻𝐸
Ω ( 𝐶𝐴𝑇𝐸𝑡) = න

𝑋

𝐶𝐴𝑇𝐸𝑡 𝑥 − 𝐶𝐴𝑇𝐸Ω 𝑥
2

𝑑𝑃(𝑥)

   where ො𝑦Ω
𝑎 : a regressor trained with whole oracle data set.

• Define a utility function 𝑢𝑡 𝑥 = 𝐸𝑡+1 𝜖𝑃𝐸𝐻𝐸
Ω 𝐶𝐴𝑇𝐸𝑡+1 , assuming 𝑥𝑡+1 = 𝑥.

• (Theorem) Assume 𝑌𝑎~𝐺𝑃 0, 𝑘 𝑥, 𝑥′ , ො𝑦𝑡
𝑎(𝑥) = 𝐸𝑡[𝑌𝑎 𝑥 ]. Then under mild 

assumptions,

𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑡+1,𝑎𝑡+1
𝐸𝑡+1 𝜖𝑃𝐸𝐻𝐸

Ω 𝐶𝐴𝑇𝐸𝑡+1 =

𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑡+1,𝑎𝑡+1
න

𝑋

𝑉𝑡+1 𝑌1 𝑥 + 𝑉𝑡+1 𝑌0 𝑥 𝑑𝑃(𝑥)

(Roughly, minimizing future error  minimizing future variance)
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Algorithm: ABC3

• Algorithm
• Compute 𝑓 𝑥, 𝑎 = 𝑋

𝑉𝑡+1 𝑌1 𝑥 + 𝑉𝑡+1 𝑌0 𝑥 𝑑𝑃(𝑥) when 𝑥𝑡+1 = 𝑥 ∈ unseen points.

• Choose 𝑥𝑡+1 and 𝑎𝑡+1 which minimizes 𝑓 𝑥, 𝑎  and observe 𝑦𝑡+1
𝑎 .

• Train a Gaussian process ො𝑦𝑡+1
𝑎  with the new data point.

• We propose an efficient way to compute the quantity without computing 
the inverse of the kernel matrix for every 𝑥. (Proposition 4.1.)
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Algorithm: ABC3

• Cohn (1994) suggested a similar active learning criteria which 

minimizes integrated predictive variance.

• The future variance assuming observation on 𝑥𝑡+1, 𝑉𝑡+1 𝑌𝑎 𝑥 , does 

not depend on outcome 𝑦𝑡+1 (computable in prior).

• Experiment 

• Naïve: Usual randomized experiment

• Mackay: choose a point of maximum variance

• ACE: minimizing the predictive variance while accessing test data set

• Leverage: choose subsamples which are optimal under linearity assumption
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Algorithm: ABC3
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• Boston: ABC3 at 20% > Naïve at 100%

• ACIC: ABC3 at 40% > Naïve at 100%

• Mackay underperforms even Naive policy 
most times

• Leverage significantly underperforms 
other policies in ACIC 

    -> vulnerability of linearity assumption

• ABC3 outperforms ACE without access to 
the test data set
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Theory: MMD

• Balance between the treatment/control groups is crucial.
• Consider a study on the causal effect of online lectures where treatment group is 

undergraduate students while control group is graduate students.

• Balance measure: Maximum Mean Discrepancy

𝑀𝑀𝐷 𝑃, 𝑄, 𝐹 = sup
𝑓∈𝐹

𝐸𝑥~𝑃(𝑥)[𝑓 𝑥 ] − 𝐸𝑦~𝑄 𝑦 𝑓 𝑦 = 𝜇𝑃 − 𝜇𝑄

2

  where 𝜇𝑃: mean embedding of P in RKHS.

• MMD measures the difference in mean embeddings of two groups, P and Q.
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Theory: MMD

• (Theorem) Let 𝑃𝑡
𝑎: treatment/control group covariate distribution at t, 𝐼𝑡

𝑎: index 
set of each group at t, and 𝜆∗: maximum eigenvalue of the kernel matrix of whole 
covariates. Then under some mild condition,

𝑀𝑀𝐷 𝑃𝑡
1, 𝑃𝑡

0, 𝐹 2 ≤ 4
𝜆∗

𝐼𝑡
1 +

𝜆∗

𝐼𝑡
0

+ 2 න
𝑋

𝑉𝑡 𝑌1 𝑥 + 𝑉𝑡 𝑌0 𝑥 𝑑𝑃 𝑥

where the first term is minimized as time proceeds, and the second term is ABC3’s 
optimization target.

(Roughly, ABC3 achieves a balance between treatment and control groups.)
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Theory: Type 1 Error

• Type 1 Error rate: If null hypothesis 𝐻0: 𝑌1 = 𝑌1 holds,
𝑃𝑡 𝑇𝑦𝑝𝑒 1 𝐸𝑟𝑟𝑜𝑟 𝑥 = 𝑃𝑡[ 𝑌1 𝑥 − 𝑌0 𝑥 > 𝛼]

where 𝛼: decision threshold.

• (Theorem) Under Fisher’s Sharp Null (i.e. 𝐶𝐴𝑇𝐸 𝑥 = 0), ABC3 minimizes the 
upper bound of 

𝑋
𝑃𝑡+1 𝑇𝑦𝑝𝑒 1 𝐸𝑟𝑟𝑜𝑟 𝑥 𝑑𝑃 𝑥

(Roughly, ABC3  minimizes Type 1 error when there is no treatment effect.)
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Discussion

• Extending ABC3 to large Weather data set

• Sample from (un)observed covariates and compute kernel matrix 
between them.

• Optimize to find 𝑥∗ which minimizes our target quantity.

• Then choose 𝑥𝑡+1 near 𝑥∗.

Active Bayesian Causal Inference with Cohn Criteria in Randomized Experiments 154/4/2025



Discussion

• Plugging-in Other Regressor

• Use GP-based ABC3 only for sampling

• Then use another type of models for regressor ො𝑦𝑎

• Performance depends on data sets
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Conclusion

• We introduce ABC3, active learning algorithm for causal 
inference from Bayesian perspective.

• ABC3 outperforms other algorithms by balancing 
treatment/control groups and minimizes type 1 error rate.

            Paper                               Code                           Personal
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