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Active Learning in Randomized Experiment

o O
° lnl lnl lnl « Randomized experiment divides subjects
Inl o O © into two groups, treatment and control
|I| w w groups.
| * However, randomized experiment is

usually expensive, so an efficient

experiment design is desirable.
- -
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Active Learning in Randomized Experiment

® O . .
- » Several works suggested efficient
lnl treatment allocation design given
Xe X7 Xg Xg outcome variance, subject covariate, etc.

actively choosable.

« However, these works assume the
ﬁo experimental subjects are given, not
] |
,
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Active Learning in Randomized Experiment

®© 6 o o : :
« What if we already know the covariate
information in prior?
X6 X7 Xg X9 * Internet companies may know personal
information before A/B test.
% « Pharmaceuticals have experiment applicants’
200 personal information.
A7 » Can we rationalize randomized
1 experiment by choosing ‘proper’ subject
o at time t?
X5
X4
X3
X2
X1
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Active Learning in Randomized Experiment

® O . . . .

= » Active learning: a practitioner sequentially
lnl lnl lnl lnl choose unlabeled data points and ask an
X1 X7 X19 Xsp oracle to label them.

» Algorithm
e « Goal: Estimate f(x) w.r.t. utility function u;
% - Fortel,..,T:
1 | « Compute utility function u,(x), x: unseen data point

1 « Choose x, = x* which optimizes u,
O - Obtain y, and train £ with {(x;, y)}!_,

X15 . .

Xog » Goal: Make randomized experiment

X42 efficient with active learning framework
X4

X10
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Algorithm: ABC3

y
 Conditional Average Treatment Effect (f(x)) -

CATE(x) = E[Y! —Y°|X = x] _ = _ _ — = y':blood pressure

-7 CATE (x,) after medication

_ y% placebo

where Y2: potential outcome, X: covariate.

Xo x: age

« Expected precision in estimation of heterogeneous effect

_— A 2
€pprp (CATE,) = f (CATE,(x) — CATE(x)) dP(x)
X

where CATE, = y! — 9?,92: aregressor at t.

» To optimize PEHE, we should assume the existence of population
parameter, CATE.
NI
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Algorithm: ABC3

« We utilize Bayesian framework by defining
CATEq(x) = 94 — 9§

eppnp(CATE,) = j (Cmt(x) — WEQ(X))Z dP(x)
X

where y3: a regressor trained with whole oracle data set.
- Define a utility function u,(x) = E; 1 |€2zns(CATE 1), assuming x,,, = x.

» (Theorem) Assume Y*~GP(0,k(x,x")), §&(x) = E.[Y*(x)]. Then under mild
assumptions,

argming,, . a,,.Ecs1|€Ppnp(CATE 41)] =
X

(Roughly, minimizing future error < minimizing future variance) M
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Algorithm: ABC3

w7 o h )
P L R =i oo & NS
10 ] treat. x 22 31 % T | treat

e X4 |n| . |_> ::> . :> o X4 |I| .

P adhife = 0 F gt |G M,
\unseen cont.) t ‘K Xt+1 = X1 B contj

« Algorithm
« Compute f(x,a) = fX Ver1[YE0O)] + Ve 1[YO(x)]dP(x) when x,,,; = x € unseen points.
« Choose x;,, and a;,; which minimizes f(x, a) and observe y£, ;.
 Train a Gaussian process y¢, ; with the new data point.

« We propose an efficient way to compute the quantity without computing
the inverse of the kernel matrix for every x. (Proposition 4.1.)
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Algorithm: ABC3

« Cohn (1994) suggested a similar active learning criteria which
minimizes integrated predictive variance.

» The future variance assuming observation on x;,¢, Vi41|Y%(x)], does
not depend on outcome y;,, (computable in prior).

* Experiment
» Naive: Usual randomized experiment
« Mackay: choose a point of maximum variance
« ACE: minimizing the predictive variance while accessing test data set

» Leverage: choose subsamples which are optimal under linearity assumption
[T
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Algorithm: ABC3

N IHDP . : BOSTON
\'\ T aee A '\.5\ L e » Boston: ABC3 at 20% > Naive at 100%
L 2 ~+a= Leverage . “ g [\ «+es  Leverage .
cweay | 2| S — wew o ACIC: ABC3 at 40% > Naive at 100%
v Tt | ¢ ¢ ==+ Mackay underperforms even Naive policy
S0 20 40 60 8 10 0 20 40 60 80 100 most times
Percentage of papulation Percentage of population
ACIC LALONDE  Leverage significantly underperforms
AR I o - — A :
§ REN g Sl iy other policies in ACIC
w é,\ 3 Leverage © e, ===+ Leverage re . . .
i, \.\ \ ey | £ “ N\ T Mackey -> vulnerability of linearity assumption
W& . \ T aive w5y D LSS, Naive
S N— "~ N, .
& \‘\;.\\ o \_:ﬁ;-—.\\.\ « ABC3 outperforms ACE without access to
> o _“:.q__.., © w
Ho 20 40 60 80 100 Yo the test data set
S Percentage of population © Percentage of papulation
o
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Theory: MMD

« Balance between the treatment/control groups is crucial.

» Consider a study on the causal effect of online lectures where treatment group is
undergraduate students while control group is graduate students.

E \wt!w CEE;{% J N \wtr;Ejt.w ct. E

» Balance measure: Maximum Mean Discrepancy
2
MMD(P,Q,F) = SUp Ex-piy [ (0] = By-qn f ()] = [y
where up: mean embedding of P in RKHS.

« MMD measures the difference in mean embeddings of two groups, P and Q.
(AT

AIML@K

M KOREA

= UNIVERSITY




Theory: MMD

« (Theorem) Let P2: treatment/control group covariate distribution at t, I?*: index

set of eac group at t, and A*: maximum eigenvalue of the kernel matrlx of whole
covariates. Then under some mild condition,

MMD (P!, PP, F)? < 4 (A— +ﬁ> f Ve YT(x)] + Ve [YO(x)]dP(x)

where the first term is minimized as time proceeds, and the second term is ABC3's
optimization target.

IHDP BOSTON ACIC LALONDE

k L \ & Naive

m— ABC3

(Roughly, ABC3 achieves a balance between treatment and control groups.)
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Theory: Type 1 Error

 Type 1 Error rate: If null hypothesis H°: Y1 = Y1 holds,
P [Type 1 Error(x)] = P[|Y1(x) = Y°(x)| > «]
where a: decision threshold.

« (Theorem) Under Fisher's Sharp Null (i.e. CATE(x) = 0), ABC3 minimizes the
upper bound of fX P,,{[Type 1 Error(x)] dP(x)

= BOSTON LALONDE
> ©» o
=" v 2\
o ik
= o5 SN
/4
o & - ® :
oY - S
-4 e
2SS0 40 80 S0 40 80
Population (%) Population (%)

(Roughly, ABC3 minimizes Type 1 error when there is no treatment effect.)
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Discussion

« Extending ABC3 to large Weather data set

« Sample from (un)observed covariates and compute kernel matrix
between them.

« Optimize to find x* which minimizes our target quantity.
* Then choose x;,, near x*.

WEATHER

= Naive
Sample (N=10)
=+ Sample (N=20)
3 = ABC3 (N=10)
. ABC3 (N=20)

EPEHE

\'_ —
<=z

02 04 06 08 10
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Discussion

* Plugging-in Other Regressor
» Use GP-based ABC3 only for sampling

« Then use another type of models for regressor y¢
« Performance depends on data sets

4/4/2025
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Conclusion

» We introduce ABC3, active learning algorithm for causal
inference from Bayesian perspective.

« ABC3 outperforms other algorithms by balancing
treatment/control groups and minimizes type 1 error rate.

Code Personal
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