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® Randomized experiment is usually expensive, so an efficient experiment design is desirable
® \What if we already know the covariate information a priori, can we utilize it?

® Active learning: practitioner chooses unlabeled data points and ask the oracle to label them X1 X4 X9 X14

X: covariate, Y4: potential outcome for treatment ((1 = 1) and control (Cl = 0) groups z
o® 14°

Xq, X2: covariate sets of the whole subjects (Q) and treated/controlled subjects at t

V&, y&: regressors trained on oracle (), and on collected data setat ¢

Broblem Goal: Estimate CATE (x) = E[Y! — Y°|X = x] with an estimator CATE, = y — §? . ‘ )

Setting Original expected precision in estimation of heterogeneous effect (PEHE) includes the X m ‘.
population CATE (x), which makes analysis tricky. Define CATEq = 95 — 9. *17 X12
Suggest Bayesian PEHE: '@ e
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Ef}EHE(CATEt) =J (CATEt(X) —CATEQ(X)) dP(x) Treatment Control
X
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® Goal: Find x4 € Xg \ (Xt UXD), ar41 € {0,1}, s.t. argminy,, 4. Eev1|€pene(CATE,)]

EPEHE
o Y <0 S0

® (Theorem) Assume Y*~GP(0,k(x,x")), 9% (x) = E;[Y%(x)]. Then under mild assumptions,

argminxt+1,at+1Et+1[EIS}EHE(CATEL“)] = argming, ., . a,.. f Vewr [YEOO] + Vet [YO (X)]dP ()

X Percentage of population

which is similar to Cohn criteria ® ABC3at20% >
Naive at 100%
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Algorithm: ® Thanks to GP, V;,, [Y%(x)] does not depend on future outcome y,,, (computable in prior)
ABC3

® We also propose an efficient way to compute the target quantity (Proposition 4.2)
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® ABC3 at40% >

unseen

Naive at 100%

Balancing
® Balance between the treatment/control groups is crucial

BOSTON

® Maximum Mean Discrepancy(P, Q). difference of mean embeddings of P and Q in RKHS

Theoretical

® (Theorem) MMD(Treatment, Control) < 4 ( ;}1‘ | ;O|) minimized as time proceeds
Property t t

+2 [, Veyr [V (O] + Ve [Y 2 (x)]dP (x): our optimization target

Type 1 Error
® Type 1 Error rate: P,[Type 1 Error(x)] = P,[|Y1(x) — Y°(x)| > a], a: decision threshold

® (Theorem) Under Fisher’s Sharp Null (i.e. CATE (x) = 0), ABC3 minimizes the upper bound of

J, Pe+1[Type 1 Error(x)] dP(x)

Population (%)

. ® We introduce ABC3, an active learning algorithm for causal inference from Bayesian perspective
Conclusion

® ABC3 outperforms other algorithms by balancing treatment/control groups and minimizes type 1 error rate
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