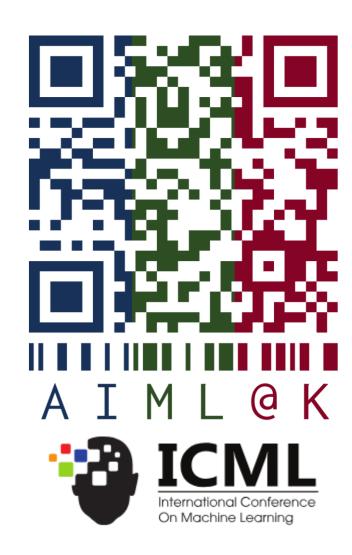
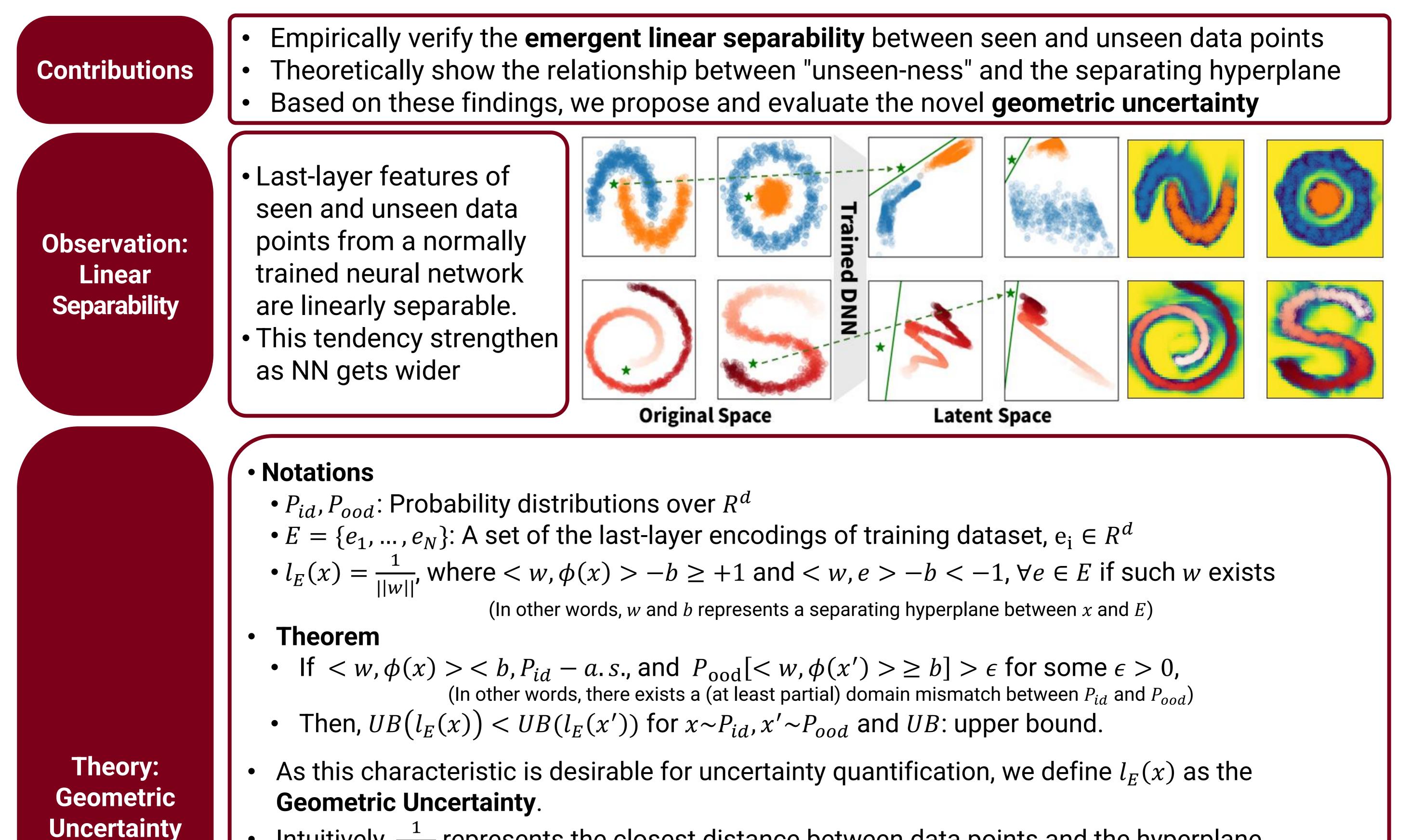


Emergent Linear Separability of Unseen Data Points in Last-Layer Feature Space

Taehun Cha and **Donghun Lee** Department of Mathematics, Korea University





• Intuitively, $\frac{1}{||w||}$ represents the closest distance between data points and the hyperplane.

- This theorem is supported by the classical statistical learning theory-like proposition.

Proposition

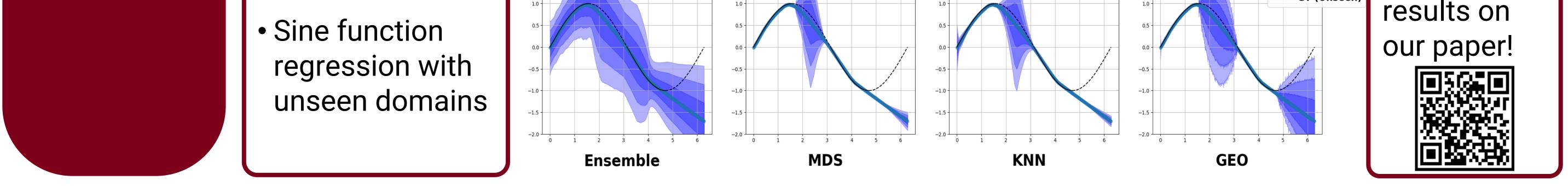
- Let $D = \{(x_i, y_i)\}_{i=1}^N$ with $y_i = -1, \forall i = 1, ..., N 1$ and $y_N = +1$
- Assume $x_i \sim P[x|y = -1]$, *i*. *i*. *d*. and $x_N \sim P[x|y = +1]$ with $x_i \in \mathbb{R}^d$ and $||x_i|| \leq B$
- Assume the linear classifier $< x_i, w > -b < -1, \forall i = 1, ..., N 1$ and $< x_N, w > +b \ge +1$
- Then for zero-one loss $L(x, y; w, b) = 1_{\{sgn[<x,w>-b]\neq y\}}$, with probability 1δ , $E[L(x, y; w, b)] < C_1 ||w|| + C_0$, where C_0, C_1 : constants

(Usually, this form of theory is used to bound the error term, but we reversely use it to bound ||w||)

 OOD Detection in image classification using (Wide-) ResNet (AUROC)

in	ID	CIFAR10		CIFAR100		ImageNet	
	Target	Near	Far	Near	Far	Near	Far
	MDS	89.89	94.80	81.63	83.84	74.16	93.06
	KNN	92.09	94.01	82.55	82.36	75.68	93.22
J	Ours	91.77	94.20	83.01	82.46	78.47	91.54

Experiments



This work is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No. 2020R1G1A1102828) I'm currently looking for a postdoctoral position in the mathematical foundations <u>of DNNs and LLMs!</u>

Check more

predict

----- GT (Unseen)

GT (Seen)