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Abstract

Feature learning is central to the success of neural networks but remains poorly understood.
Recent work proposed the Neural Feature Ansatz, which highlights alignment between learned
features and V, f, but does not explicitly explain why and how feature learning dynamics occur.
To address this, we introduce a novel concept, virtual update, a stochastic gradient descent (SGD)
step applied to inputs and hidden states rather than parameters, i.e., z — YV L and h — vV L.
We theoretically show that SGD aligns network weights with the covariance structure of the virtual
update. This does not result in disagreement with an actual update, as the actually updated input
does not deviate far from the virtually updated input. Building on this insight, we propose the
virtual covariance learning algorithm, which directly obtains the weight matrix that achieves
the desired covariance structure. This algorithm efficiently learns effective weights within one
or two epochs—whereas SGD requires 10-20 epochs—with low variance and no overfitting. Our
results provide both a new theoretical perspective on feature learning and an alternative to standard
training.

1. Introduction

Though feature learning is a key factor behind the success of neural networks, it has been less ex-
tensively studied from a theoretical perspective compared to optimization or generalization. For
example, one of the most notable deep learning theories, the neural tangent kernel [6], simply lin-
earizes the network around initialization in parameter space, effectively freezing features in the
infinite-width limit. Although this provides a great simplification for understanding neural network
learning dynamics, it does not directly address why feature learning happens and what neural net-
works actually learn.

Recently, Radhakrishnan et al. [11] proposed the Neural Feature Ansatz, which states a pro-
portional relationship between the Gram of the weight matrix, W TV, and the outer product of
input gradients, V,f - V,f . Unlike previous works, which mainly utilize the weight gradients,
V. f, they highlighted the relationship between the learned features and V. f. However, their work
did not directly address the detailed mechanisms or the dynamics involved in the process of feature
learning, leaving open important questions about how and why neural networks develop meaningful
internal representations during training.

We present virtual update and its corollary concepts that facilitate feature learning dynamics in
neural networks. The virtual update, x — vV L and h — vV, L, assumes hypothetical updates in
input and a hidden state with a stochastic gradient descent (SGD) step. It is virfual in the sense that
we never actually update the input itself. Surprisingly, however, we theoretically verify that SGD
induces a remarkable alignment of the weight matrix with the virtual update. We show that (1) an
update in the Gram matrix of the weights is approximately equivalent to the update in covariance of
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the virtual update, and (2) it does not conflict with an actual update, as both share the same sign and
bounded magnitude. This provides insight into what weight matrices actually learn across multiple
layers and may identify the core mechanism of feature learning.

Building on this insight, we propose the virtual covariance learning algorithm. By solving a
constrained quadratic optimization problem, we directly obtain a weight matrix that aligns with the
desired covariance structure. As a result, our algorithm efficiently reaches the best-performing
weights within one or two epochs on real-world image datasets, whereas SGD requires 10-20
epochs. Our work not only suggests a powerful training algorithm for neural networks but may
also offer a novel framework to understand the core of feature learning.

2. Virtual Covariance Learning
2.1. Mathematical Construction

Define an L-layer neural network f(x) = w'hy, where h; € R% denotes the [-th hidden state,
recursively defined as h; = o(Wj_1h;_1) with hy = = € R%, and o is a nonlinear activation
function. The vector w € R? serves as the final predictor, and W, € R%+1%% are the weight
matrices. For a general loss function £, the gradient with respect to W is represented as Vy, £ €
R%+1 x R% defined as the element-wise derivative matrix. By applying the chain rule, we obtain

Vi, L = (vhlJrlE © J,(Wlhl)) : hl—r and
vhz‘c = VVZT(vth‘C © Ul(mhl))v

where © is an element-wise product, so we have,

W'V, L=V L N (1)

This equation suggests a relationship between the gradient with respect to the weight matrix and
the gradient with respect to the hidden states. Based on this observation, we define the notions of
virtual update and virtual covariance.

Definition 1 We define the virtual update of a hidden state h; (or of the input hg = x) with learning
rate vy as h;r = h; — 7V, L. Correspondingly, we define the virtual covariance as cév(h;r) =
bt - (h)T = (i — yVi,L) - (i — vV, L)". The virtual covariance shift is then given by
cov(h) — cov(hy).

The virtual update intuitively represents how the input to the /-th layer would change under gra-
dient descent in order to minimize the loss. It is termed virfual because we never directly update the
hidden states themselves, but rather the weight matrices. Since the virtual covariance corresponds to
the covariance structure of virtually updated hidden states, the virtual covariance shift characterizes
how the input covariance structure would evolve to reduce the loss.

We note, however, that cov is not necessarily a true covariance matrix, as hz+ and h; are not guar-
anteed to be centered. It coincides with a genuine covariance matrix when suitable normalization
techniques are applied to the hidden states.
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2.2. Rethinking the SGD as a Virtual Covariance Learning

Recall that stochastic gradient descent (SGD) optimizes the weight matrices by subtracting the
gradients scaled by the learning rate, i.e., VVZ+ = W; — vVw L. By computing the covariance
matrix of the updated weight vector, we obtain the following theorem.

Theorem 2 The shift in the covariance matrix of the SGD-updated weight matrix is approximately
equal to the virtual covariance shift, up to a residual term of order ¥, i.e.,

W TW =W W, = cov(h;h) — cov(hy) +~* - residual.

The proof is given in Appendix A.1. Theorem 2 states that after an SGD actual update, the
weight covariance matrix is updated to reflect the covariance of the virtual update. This result
can be naturally extended to the mini-batch training setting by defining VVZJr =W, —~>, VwkL;
where £; denotes the loss for the ¢-th data point. In this case, we obtain (V[/;r)TI/VlJr — I/VlTVVl ~
> cév(hlfi) — cov(hy;). By defining W) as the weight matrix obtained after 7 steps of SGD
updates, we have (W}) TW} — (W) TW? =~ 3¢ _, cov(hy) —cov(hy,;), where W) and ) denote
the initialized weight matrix and its corresponding hidden state, respectively.

Compared to the Neural Feature Ansatz proposed by Radhakrishnan et al. [11], which states
WW o« + SN Vaf - (Va, f)T, where + SN Vaf - (Va, f)7 is referred to as the Average
Gradient Outer Product (AGOP), Theorem 2 also involves an AGOP-like term, but with gradients
taken with respect to the loss function rather than the network output. Moreover, Theorem 2 treats
the AGOP term as a negligible residual of order 2. We will empirically examine the effect of this
AGOP term in Section 3.

As we have established the relationship between the covariance of the actually updated weight
matrix and that of the virtual update, it is natural to ask about the corresponding relationship for
expectations; specifically, between the virtual input h;r and the actual input U(Wltlhl,l). The
following theorem provides a formal characterization of this relationship.

Theorem 3 Assume the non-linear activation function o is L-Lipshitz and ||h;—1|| = 1. By fixing
the other layers, we obtain |0(I/Vlt1hl_1)—a(ﬂ/l_1hl_1)\ < L2\hl+—hl , elementwisely. Also, if we
assume that o is an increasing function, then sgn (J(Wfilhl_l) — U(I/Vl_lhl_l)) = sgn(hfL — hy).

The proof is given in Appendix A.2. Theorem 3 states that the change in the actually updated
hidden state, J(I/Vlflhl,l) — o(W;_1h;_1), has the same sign as the change in the virtual update,
h;r — h;. Moreover, its absolute magnitude is bounded by |hlJr — hy| factor. For activation functions
such as ReLU or GELU, which satisfy the 1-Lipschitz condition, this bound becomes ]h;r — hy|
itself.

Recall that Theorem 2 states that I/Vl+ learns the covariance structure of the virtual update hfr.
However, if the virtually updated hidden state hl+ deviates significantly from the actually updated
hidden state a(VVltlhl_l), then a discrepancy may arise between what VVZ+ is implicitly trained
to expect and what it actually receives as input. Fortunately, by Theorem 3, the actually updated
hidden state does not deviate far from the virtual update. As a result, in practice, VVZJr already carries
information about o(W;* | h;_1) before it explicitly observes it.
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2.3. Virtual Covariance Learning

We have shown that SGD captures the virtual covariance shift as an unintended artifact. If this
phenomenon lies at the core of feature learning, it is natural to ask: can we directly learn the virtual
covariance structure?

To address this question, we propose a novel algorithm called virtual covariance learning. Our
approach solves the following optimization problem:

min W+ —W|% subjectto (WH)TWH —WTW = cov(h™) — cov(h), )

where ||| 7 denotes the Frobenius norm.

Note that there exist many solutions satisfying (W,;")"W,;" — W, W, = cov(h;") — cov(hy)
(e.g., if one I/VIJr satisfies the condition, then for any orthogonal matrix (), the product QVVZJr is
also a valid solution). Since the condition only constrains the input covariance structure, we enforce
similarity in the output by requiring the minimum-norm solution. We can exactly solve the problem
as follows:

Proposition 4 Ler C = [W," W, + cdv(hT) — cov(h)] Y2 \which is the square root of the matrix,
and PXQT be a singular value decomposition of W;C. Then the solution for Equation (2) is
PQ'C.

The proof is given in Appendix A.3. We summarize our algorithm in Appendix B.

3. Experiments
3.1. Comparison with AGOP

Radhakrishnan et al. [11] proposed the Neural Feature Ansatz, which takes the form W'W o
% Zfil Vaof (Ve f)T. They reported a surprising agreement between the two factors. Subse-
quently, several follow-up works have shown that empirical phenomena observed in neural net-
works also arise in AGOP-based feature learning algorithms—for example, spurious correlations
[11], grokking [9], and neural collapse [2].

In this section, we compare weight covariance (W T W) with AGOP (% Zf\il Vof - (Ve £)1)
and the sum of our proposed virtual covariance shift (3" _; c6v(hlfT) — cov(hy+)). We employ a
two-layer neural network with a hidden dimension of 256 and train it on the CIFAR-10 dataset [7]
using SGD with a learning rate of 0.05. We use the GELU function [5] as a ¢. The model achieves
46% accuracy on the evaluation dataset. We then plot the diagonal components of W ' W, AGOP,
and the sum of the virtual covariance shift in Figure 1. We also compute the Pearson correlation p
between them.

We observe that both virtual covariance and AGOP exhibit a high correlation with the weight
covariance. However, virtual covariance achieves a correlation of p /~ (.98, which is substantially
higher than that of AGOP (p ~ 0.71). This tendency is also evident in the visualizations: while
both methods highlight the centered region, AGOP produces a relatively vague pattern, whereas
virtual covariance closely resembles the weight covariance. Through this, we empirically verify that
Theorem 2 holds, and the 72 factor does not significantly affect the resulting weight covariance.
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Figure 1: Visualization of the diagonal components of the weight covariance, AGOP, and the sum
of our proposed virtual covariance shift. To quantify similarity, we compute the Pearson
correlation coefficient p with respect to the weight covariance.

3.2. Empirical Performance

In this section, we empirically evaluate our virtual covariance update (VC) algorithm. As in the
previous section, we employ a two-layer neural network with a hidden dimension of 256 and train
it on the MNIST [3], SVHN [10], CIFAR-10, and CIFAR-100 datasets [7]. For our algorithm, we
set « = 0.1, where o denotes the matrix power factor, as & = 0.5 leads to numerical instability.
We set v = 5.0 for MNIST, v = 1.0 for CIFAR-10 and SVHN, and v = 0.05 for CIFAR-100.
Interestingly, a large learning rate (> 1.0), which is rarely used in neural network training, leads
to good performance in our virtual covariance learning setting. Before applying virtual covariance
learning, we train the last layer as a warm-up stage.

Note that our algorithm mainly trains the weight matrices rather than the bias vectors. To ad-
dress this issue, we present the fine-tuned version of our algorithm, which finetunes only the last
prediction layer after each epoch. It is equivalent to performing linear logistic regression. This sim-
ple adjustment helps the model better adapt to the evolving feature representations during training.

For comparison, we train the same model using SGD, selecting the learning rate from v €
0.1,0.05,0.01,0.005 and choosing the value that yields the highest test accuracy. Each experiment
is repeated five times, and we report the mean and standard deviation of the results. The outcomes
are shown in Figure 2.

For all datasets, our algorithm (VC and its fine-tuned version) achieves the best performance of
SGD in only one or two epochs. This is surprising, as SGD requires nearly 8 epochs on CIFAR-
100 and 18 epochs on SVHN to reach comparable performance. More interestingly, on CIFAR-10,
VC attains a level of performance that is not achievable by SGD. We verify that overfitting readily
occurs with SGD on CIFAR-10, resulting in low mean accuracy and high variance. In contrast, our
algorithm does not exhibit overfitting and consequently maintains consistently low variance.

The effect of last layer fine-tuning varies depending on the dataset. Except for CIFAR-100, fine-
tuning marginally affects the final performance. However, for CIFAR-100, fine-tuning increases test
accuracy by approximately 3—4%. As a result, VC alone cannot achieve the best SGD performance,
but the fine-tuned VC can. We suspect that the number of data points per class or the number of
classes causes this difference.
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Figure 2: Test set accuracy for MNIST, SVHN, CIFAR-10, and CIFAR-100 datasets for each epoch.
We run each experiment 5 times and report the mean and 2 x standard deviation. The blue
dashed line represents routinely trained SGD, while the red solid line refers to our virtual
covariance learning (VC). The red stars indicate the last layer fine-tuned version of our
algorithm after each epoch.

In summary, our proposed virtual covariance learning achieves three properties:

* Efficiency: VC attains the best performance in only a few epochs.

* Robustness: VC exhibits very small performance variance.

* Non-overfitting: VC does not overfit with further training epochs, despite achieving the best
performance early.

These results demonstrate not only the power of virtual covariance learning but may also provide
insight into understanding complex feature learning dynamics in neural networks.

4. Discussion

Note that the most time-consuming step for our algorithm is computing the square root of (Wl+)TWl+,
whose size is d; x d;. This becomes particularly expensive when the input dimension is large; for
example, in image data, dg = (channels) x (height) x (width). However, since VVZTI/VZ is already
known and cov(h™) — cov(h) is low-rank, the problem can be solved recursively using the secular
equation with improved efficiency. We leave a detailed investigation of this approach for future
work.

We only investigated our algorithm in a two-layer feed-forward neural network. However, the
difficulty of training deep neural networks is well-known both empirically [4] and theoretically
[13]. Moreover, various neural network architectures have been introduced to incorporate inductive
biases, such as convolutional neural networks [8] and self-attention structures [14]. We leave the
extension of our virtual covariance learning to these deep and diverse neural network architectures
as future work.

Another interesting phenomenon in neural networks is benign overfitting, i.e., the model gen-
eralizes well to unseen data while easily memorizing the training data. Bartlett et al. [1] showed
that this phenomenon is deeply related to the eigenvalue structure of the input covariance, E[zz ).
Since our virtual covariance learning also treats the input covariance as a direct training signal, we
hope our framework sheds light on this previously unexplored phenomenon.
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Appendix A. Proof
A.1. Proof of Theorem 2

Theorem 2 The shift in the covariance matrix of the SGD-updated weight matrix is approximately
equal to the virtual covariance shift, up to a residual term of order ¥, i.e.,

WHTWE =W, W, = cov(h;") — cov(hy) ++2 - residual.
Proof
(W)W = (Wi =1 Vw L) (Wi = 7VwL)
= VVZTI/VZ — VVlT’yVWE — 'yVWETVVl =+ V2 - residual
AW, W — (W, VwL + Vw L W)
=W,'W; —~y(Vn,L-h/ +h -V, L") by Equation (1). (3)

As (h = AVRL) - (h—=AVRL) T = h-h" —y(Vp, L k| +h - Vi, LT) + 2 - residual, we can
rewrite Equation (3) as,
(W) W =W Wi (b =y Va L) - (e =y Vi L)' = bl
= cov(h;") — cov(hy)

A.2. Proof of Theorem 3

Theorem 3 Assume the non-linear activation function o is L-Lipshitz and ||h;—1|| = 1. By fixing
the other layers, we obtain |o(W," | h_1)—c(W,_1hy_1)| < L*|h;"— |, elementwisely. Also, if we
assume that o is an increasing function, then sgn (J(Wltlhl,l) — J(T/Vl,lhl,l)) = sgn(hlJr — ).

Proof Define the pre-activation hidden state z; = W;_1h;_1 and its actual update zl+ = V[/ltlhl_l.
Then we can observe

2t =W iy

= Wi—ihi-1 —v(Vw,_, L)l

=2 — YV L{h_1,hi—1) asVw, L=V,L h

=2 —9YV,L as|h_i] =1

By the L-Lipschit property,
oWt h—y) — o(Wisihy—1)| < LIWE by — Wi hy_q|

=Lz — |
= LyV., L]
= Liyo'(z) ©Vp, L] asV,L=0"(z)o VL
< LWV, L] aso'(z); < L,Vi
= L?|h — Iy



FEATURE LEARNING AS A VIRTUAL COVARIANCE LEARNING

For the sign case, as o is a increasing function,

sgn(o (W5 i) — o(Wiihi)) = sgn(o(2") — o(21))
=sgn(z" — z) by increasing property
= Sgn( zz‘c)
= sgn(—0’(z) © Vi, L)
= sgn(—Vy,L) by increasing property
= sgn(h — hy)

A.3. Proof of Proposition 4

Proposition 4 Let C = [W," W, + cov(h') — cov(h)] Y2 \ohich is the square root of the matrix,
and PXQ" be a singular value decomposition of W,C. Then the solution for Equation (2) is
PQ'TC.

Proof Recall, our problem is

wymﬁ—wmwmmmm WHTWT —WTW = cov(ht) — cov(h).

For any matrix U € R4+ x R%  satisfying U 'U = I, UC satisfies the equation condition. So our
goal becomes finding
min [|[UC — W||%.
uTu=I
which is an orthogonal Procrustes problem [12]. By applying the singular value decomposition to
WC, we obtain PXQ ", and our desired solution is PQTC
|

Appendix B. Virtual Covariance Learning Algorithm

Here we present our virtual covariance learning algorithm. We introduce a hyperparameter « to
control the matrix power, as we found that a small value (e.g., a = 0.1) provides better numerical
stability than o = 0.5.

10
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Algorithm 1: Virtual Covariance Learning

Input : Neural network f with weight matrices W/, loss function £, data D = {(x;, i)},
hyperparameters ~y and o
Output: Trained neural network f

Randomly initialize f;
f < Train Last Layer (warm Up) ;
Set initial virtual covariance shift of each layer V; = 0;
for Mini batch B C D do
Compute h; and V,, L for each layer [ with forward pass;
for/l € {1,...,L} do
Compute virtual covariance shift v; = cov(h;") — cov(hy);
Vi<V 4+
C e [WW+V]%
PYQT < SVD of W,C;
W, + PQ'C;
end

end
f < Train Last Layer (finetune)

11
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